
Modeling Natural Geometries Using
Repulsive Shape Optimization

ME 6104 - Computer-Aided Design
Final Report

Professor: Dr. Yan Wang

April 29, 2022

Group Members:
Ryan Grajewski

Paul Babou

1 Introduction
1.1 Project Background and Motivation

Shape and topology optimization applications are frequently used when modeling

complex 3D geometries in order to efficiently generate or improve existing 3D CAD

models. These ordinary optimization schemes attempt to solve what is known as the

optimal control problem, which involves finding a geometry, shape, or topology such that

a certain desired parameter or cost functional is either maximized or minimized, while

also satisfying other defined constraints[1]. It is common for a 3D model to be optimized

for parameters such as weight of the part, material cost, surface area, topology, stress

concentrations, manufacturability, and more. The reason optimization techniques have

become a popular area of study is because of their potential impact on industry where

time and material cost constraints make it necessary to optimize parts from the onset of

the design phase, rather than iterating through a trial-and-error process.

In the context of most real-world design problems, an optimization study for a

part must perform two key functions: it must maximize or minimize the desired

parameters within the constraints, and it must also result in realistic geometries that can

exist in the real world. While many programs are available for sufficiently performing the

first function, the second function is often overlooked. The resulting optimized part can

often contain impossible geometries like curve self-intersections or surface collisions.

These geometries have the potential to generate invalid or non-orientable objects which

do not follow the dimensional constraints we all live by. A good example of this is the

Klein Bottle [Figure 1] – while it may look generic, the self-intersection makes the bottle

1

a one-sided surface which is a phenomenon that can only exist in a four dimensional

setting.

Repulsive optimization methods attempt to solve these challenges by inherently

preventing curves or surfaces from intersecting or “crossing over” in space. This is done

by employing a secondary cost functional, known as a repulsive energy, that translates

or repels points that are close in space (high energy) away from each other while

simultaneously solving the given optimal control problem. Repulsive optimization

methods are therefore valuable tools for disciplines like mathematical visualization,

image processing, rendering, animation, and computational design. One such

application that is of particular interest, and is the motivation behind this project, is

computer modeling of complex geometries that are found in nature. The laws of nature

dictate that organisms and membranes must grow or form in such a way so that they

avoid passing through themselves. Thus, a unique capability of repulsive optimization is

the ability to model things such as neural networks, blood veins, muscle tissues, etc.

2

1.2 Project Objective

The driving objective for this project is to demonstrate how repulsive optimization

theory can be used to accurately model a simplified bicep muscle tissue strand [Figure

2]. To narrow the scope of this endeavor, however, the immediate objective of this

modeling project – and what this report principally focuses on – is developing a python

optimization algorithm which can be used to eliminate self-intersections for any input

closed curve. The designed algorithm should take in input control coordinates for a

closed spline curve, and output a visualization of the input curve as well as the final

optimized curve. Such an algorithm consists of two key functionalities: it (1) implements

a repulsive energy function, calculating the repulsive energy values for all points along

the curve, and (2) uses an optimization method to minimize that energy along the curve

by iteratively translating the curve towards orientations of lower energy. While several

alternatives exist, the repulsive energy function that is utilized for this algorithm is the

repulsive Tangent-Point Energy. Similarly, there are multitudes of optimization schemes

available for implementation, but for this project only Gradient Descent was considered

because it is easy to implement and the focus of the project is the behavior of the

repulsive energy.

3

1.3 Existing Approaches for Repulsive Energy Functions

Several repulsive energy functions have been documented that can be used for

this curve optimization algorithm. In general, these functions should calculate an energy

value for all points along a curve, and energies should approach infinity as the distance

in space to another point along the curve approaches zero.

The Coulomb-Electrostatic Energy is one of the more rudimentary forms of

energy functions as it is an adaptation of Coulomb’s Law, which quantifies the force

between two stationary electrically charged particles. In the context of curves,

Coulomb-Electrostatic Energy can be thought of as the electrical repulsive force

between two points on a curve if that curve were given a uniformly distributed electrical

charge[4]. A good visual for this energy function is shown below in Figure 3.

With 𝛶 denoting a closed-curve, the equation for the Coulomb-Electrostatic Energy is:

4

which translates as the inverse of the distance between two points along a curve raised

to a power 𝞪. The exponent 𝞪 dictates the rate at which the energy loses its strength as

distance increases. The drawback for using this energy function is that it also considers

adjacent points along a curve, applying massive energy values to those points because

they are considered closest[4]. Also, for 𝞪 < 2 the energy cannot prevent intersections.

Optimizing this energy would not be advantageous for this algorithm because it would

not specifically target self-intersections, and would attempt to repel points that are next

to each other along a curve as well.

The second energy function considered for this algorithm is the Möbius Energy

function which was first defined by O’Harra in 1989 for use in knot theory. This energy

function expands upon the Coulomb-Electrostatic Energy function by introducing a

correctional component that removes the influence of nearby and adjacent points along

the curve[5]. The equation for Möbius Energy is:

where the correctional component is D(x1,x2) which is defined as the geodesic distance

along the curve[6]. This energy function is more robust than the Coulomb-Electrostatic

Energy because it ensures that adjacent points along a curve will not repel each other.

However, a key aspect of this energy which happens to be a drawback for this algorithm

is that it is invariant to Möbius transformations. Möbius Invariance means that points will

remain the same after a Möbius transformation, and for our purpose that means that the

energy function purposefully ignores sections of a curve where points are very close in

5

space but only slightly distant along the curve – picture a tightly wound rope[7]. While

this drawback could easily be controlled by avoiding certain input curves for the

algorithm, it presents an inherent and upfront limitation.

The repulsive Tangent-Point Energy function was selected for this algorithm

because it mitigates the concerns found with both the Coulomb-Electrostatic Energy

and Möbius Energy functions. The equation for Tangent-Point energy is:

where R(x,y) is the radius of the smallest sphere passing through a point Y that is also

tangent to a point X along the same curve[6]. A good visualization of this sphere is

shown in Figure 4. By definition, a larger radius means a lower energy, and vice versa.

This energy function inherently minimizes contributions from adjacent points along a

curve because the sphere connecting the two would need to be massive, and therefore

produce an inconsequential energy. Furthermore, Tangent-Point energy is not Möbius

Invariant.

6

2 Approach and Methodology
The following section provides an in-depth, step-by-step of the implementation

approach for repulsive energy function and optimization method. In general, the

approach for developing our repulsive optimization algorithm can be separated into two

steps: Tangent-Point Energy, and Gradient Descent. The methods and equations

described in this section are all coded in Python using similar logic.

The closed spline curve shown in Figure 5 is used as the functionality test case

as it is easy to visualize where the points of highest energy are located, and where they

should move during optimization. This curve is initialized by inputting 11 point

coordinates into the Parametric Spline function within the python visualization toolkit

(VTK), which interpolates a smooth discrete curve between each coordinate. To

alleviate computational time while still maintaining an accurate tangent line for the

Tangent-Point Energy sphere, the parametric spline function only generates 200

discrete points to define the curve.

2.1 Implementation of Tangent-Point Energy

2.1.1 Development of Radius Equation

The first and most important step in implementing the Tangent-Point Energy

function is defining the radius equation. To reiterate, this is the radius of the smallest

7

sphere that passes through one point on the curve while also being tangent to another

point on the curve. The approach for determining the radius utilizes the fundamentals of

geometry such as line and plane intersections. This approach was taken in an effort to

demonstrate the utility of the course material.

Step 1: Find the center of the smallest sphere connecting three points [Figure 6].

- In 2D space, this is done by finding the intersection of the perpendicular bisectors for the
two lines that connect points P1 and P2, and P2 and P3.

- In 3D space, the equations of the planes are used:

- A sub-function was created in python to determine the
equation of the line where the two planes intersect -
this is vertical line passing through the center of the sphere.

Step 2: Introduce the tangency condition [Figure 7].

- To introduce the tangency condition of Tangent-Point Energy,
move points P1 and P2 immediately next to each other.

Step 3: Determine the radius [Figure 8].

- Find the shortest distance from the point P1 that intersects the vertical line passing
through the center of the sphere - this is the Tangent-Point Energy radius

8

2.1.2 Identification of Points with Highest Energy

The second step in implementing the Tangent-Point Energy is to identify the

points with the highest energy that should be optimized. Before this can happen, the

energy for each point along the curve should be calculated using the radius equation

previously defined. So, the equation for the Tangent-Point Energy becomes:

where the subscript c denotes the coordinate of the center of the sphere. The parameter

𝞪 was chosen as 2 for this algorithm because Tangent-Point Energy will be Möbius

Invariant if it is any less.

Since the goal is to eliminate self-intersections rather than just minimize

tangent-point energies (which would result in the curve being a circle), a criteria must be

defined for what constitutes the location of self-intersection. Chosen criteria:

High Energy Criteria: points with energy magnitudes that are at least 60% of

the maximum energy calculated for the entire curve.

This criteria was chosen as it adequately captures the point with highest energy (which

would be the point of self-intersection) as well as the neighboring points which may

contribute to the self-intersection. Figure 9 demonstrates this criteria as a threshold on

the total energy curve.

9

2.2 Implementation of Gradient Descent

Gradient Descent is a rudimentary optimization method that utilizes the gradient

function to translate points in the direction of a local minimum. This method is used to

minimize the points identified as having highest energy on the curve. It is an iterative

method, meaning after each step, the algorithm recalculates the points with highest

energy and repeats the translation process.

2.2.1 Development of Gradient Equation

The general equation for Gradient Descent is:

Where ∇є denotes the gradient of the Tangent-Point Energy function. The gradient of a

function requires the partial derivatives with respect to each coordinate axis:

For this algorithm, the partial derivatives were taken for the Tangent-Point Energy

function and the resulting gradient formulation is shown here:

10

2.2.2 Iterative Translation of High Energy Points

A localized approach to Gradient Descent is used for this algorithm, meaning discrete

points are moved rather than moving the control coordinates. This approach was chosen

because the VTK Parametric Spline function automatically defines the control coordinates for

the input curve. Manipulating the curvature of the spline without access to the control

coordinates becomes difficult from a global perspective, though local control also presents some

challenges as will be described in the Results and Future Work sections.

The local approach involves iteratively translating each discrete point with high energy a

stepsize in the opposite direction of the gradient. After each point is moved one step, the

algorithm then recalculates which points have the highest energy, and then the process is

repeated. Points are translated towards lower energies until the algorithm reaches the defined

iteration limit. Because the algorithm recalculates the gradient and energy function every

iteration, increasing the number of iterations means prolonging the computational time

dramatically. The limit chosen for this algorithm was 20 iterations, which equates to around two

minutes of calculations.

An important consideration for our implementation of Gradient Descent is the choice of

learning rate, which is denoted by 𝜂 in the Gradient Descent equation depicted in the previous

section. The learning rate defines the size of the step a point will be moved in the direction of

lower energy, and has a significant impact on whether the optimization algorithm converges or

diverges. Too small of a learning rate will significantly increase computational time, while too

large of a learning rate will cause the path to bounce around and diverge. Through trial and

error tests, we arrived at a learning rate of 𝜂 = .02.

11

3 Results
The designed algorithm still requires considerable development to achieve the

level of functionality envisioned for the project objective. The current state of the

algorithm satisfactorily implements the Tangent-Point Energy function and calculates the

energy sphere for all discrete points along the test case spline curve. It also is capable

of correctly identifying the location of points with the highest energies. The

implementation of Gradient Descent is mathematically correct, however this function is

presenting challenges after a few iterations because it begins translating target points in

directions that differ from what intuition tells us. Significant troubleshooting efforts have

been conducted, though computational time has limited the ability to completely correct

the algorithm.

Shown in Figure 10 below is a visualization of a Tangent-Point Energy sphere for

two points along the test case curve.

The current implementation of the Gradient Descent method is presenting some

challenges, however. The behavior of the curve is rather chaotic and not what one

would expect when using such a simple spline curve. Table 1 depicts a 20 iteration

12

simulation on a 100-point curve with 𝛼 = 2 and 𝜂 = .02. What is interesting about this

simulation is that it appears to follow the rules of repulsive optimization. A key example

of this is seen in the transition between Step 3 and Step 4 – as the kink in the curve on

the bottom-right grows upwards, the opposite side of the curve moves to avoid being

too close. This is evidence that the algorithm is attempting to repel points with too high

of an energy, though it is very clear that the direction in which it does so is incorrect.

Table 1: 20 Iteration Functionality Test

Initial Curve Step 1 Step 2 Step 3

Step 4 Step 5 Step 6 Step 7

Step 8 Step 9 Step 10 Step 11

Step 12 Step 13 Step 14 Step 15

Step 16 Step 17 Step 18

`

13

4 Summary and Future Work
To summarize, Repulsive Shape Optimization methods attempt to solve an optimal

control problem while preventing curve and surface self-intersections. These repulsive methods

are particularly adept at modeling geometries found in nature as things in nature must form in

such a way that prevents growing through itself. The ultimate motivation for this project is to

model a bicep muscle tissue strand, demonstrating the repulsive optimization’s ability to

accurately model natural geometries. Due to limitations and troubleshooting challenges, that

goal could not be fully achieved. However, the algorithm developed for this project forms the

basis for this goal as it implements the repulsive Tangent-Point Energy function and uses

Gradient Descent optimization to minimize curve energies. Despite successes in implementing

the repulsive energy function, there still exist some challenges that need to be overcome with

Gradient Descent.

4.1 Implementation Challenges and Limitations

As of now, the energy calculation seems to give correct results, even though a different

approach could be used in order to reduce the calculation time. Indeed, for every iteration of the

optimization process, the energy of every point with respect to every other point is calculated

which can be very time consequential. There exist optimization acceleration methods that work

to reduce the calculation time by discretizing the inner product of the integral, though these

methods are typically very complicated and outside our realm of academic

understanding.However, by reducing this calculation time, a simulation with more iterations and

a smaller learning rate could be done which might give better results. It could also be possible to

create a curve with a lot more elements than 200 and increase the accuracy of the program.

14

Another challenge that needs to be overcome is the way the gradient descent is applied.

Currently, local nodes are modified at every iteration if they possess a really high energy. This

local aspect of the optimization might be one of the reasons for the problems encountered.

Individually translating discrete points on the curve inherently means each point will follow the

direction of its own gradient, which can often lead to points translating in odd directions. One

consideration that would mitigate this error is using a global approach to the optimization. By

using the control coordinates of the spline to determine the overall geometry, the direction of

optimization can be controlled more smoothly and prevent the wonky iterations seen in the local

approach. This would require using a different python toolkit function to generate the input

spline. However, once that is done, the Gradient Descent process would remain exactly the

same – calculate the points with highest energy, shift the control points so that the discrete

points move in the direction of decreasing energy, and then repeat.

4.3 Future Work

Immediate attention is required to correct the errors present with the Gradient Descent

function. The most promising plan of action would be to create the input spline in a different way

where the control points could be used to have a global influence on the shape of the spline. By

doing so, these control points could be modified with the gradient descent method instead of the

local nodes that are currently used.

The desired outcome of this entire endeavor is to demonstrate the real-world utility of

Repulsive Optimization by modeling a bicep muscle strand. This problem could be formulated

as multiple spline curves, each with two static control points in the place of where the shoulder

ball-and-socket joint and elbow joint are. One consideration to develop in the future would be

the interaction of Tangent-Point Energies between multiple curves, rather than just with respect

15

to a single curve. The process would be similar, though computing energies between several

curves could be extremely expensive.

Ultimately the application of these theories is very pertinent to many industries, and the

development of such a tool could progress 3D modeling methods in a very interesting way.

16

References

[1] Optimal Control Problem, http://liberzon.csl.illinois.edu/teaching/cvoc/node4.html.

Andnicolevorderobermeier Arxiv:2104.10238v1 [Math.AP] 20 Apr 2021.
https://arxiv.org/pdf/2104.10238.pdf.

[2] “Imaging Maths - inside the Klein Bottle.” Plus Maths, 1 Sept. 2003,
ttps://plus.maths.org/content/imaging-maths-inside-klein-bottle-15.

[3] Keenan Crane - Repulsive Surfaces,
https://www.cs.cmu.edu/~kmcrane/Projects/RepulsiveSurfaces/index.html.

[4] Saslow, Wayne M. “Coulomb's Law for Static Electricity, Principle of Superposition.”
Electricity, Magnetism, and Light, Academic Press, 9 May 2007,
https://www.sciencedirect.com/science/article/pii/B9780126194555500024.

[5] O’Hara, Jun. “Energy of a Knot.” Topology, Pergamon, 21 Mar. 2002,
https://www.sciencedirect.com/science/article/pii/0040938391900102.

[6] Keenan Crane - Repulsive Surfaces,
https://www.cs.cmu.edu/~kmcrane/Projects/RepulsiveSurfaces/index.html.

[7] Symmetry, Integrability and Geometry: Methods and ... - Massey University.
https://www.massey.ac.nz/~rmclachl/sigma16-080.pdf.

[8] Alonso, Gustavo, et al. “Optimization Methods.” Desalination in Nuclear Power Plants,
Woodhead Publishing, 1 May
2020,https://www.sciencedirect.com/science/article/pii/B9780128200216000053.

[9] Brownlee, Jason. “Gradient Descent with Adadelta from Scratch.” Machine Learning
Mastery, 11 Oct. 2021,
https://machinelearningmastery.com/gradient-descent-with-adadelta-from-scratch/#:~:text=Gradi
ent%20descent%20is%20an%20optimization%20algorithm%20that%20uses%20the%20gradie
nt,of%20partial%20derivatives%2C%20called%20Adadelta.

[10] Kwiatkowski, Robert. “Gradient Descent Algorithm - a Deep Dive.” Medium, Towards Data
Science, 24 May 2021,
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21.

[11] Real Python. “Stochastic Gradient Descent Algorithm with Python and NumPy.” Real
Python, Real Python, 19 Jan. 2021, https://realpython.com/gradient-descent-algorithm-python/.

[12] Roshchupkin4, S P, et al. “IOPscience.” New Journal of Physics, IOP Publishing, 22 Dec.
2021, https://iopscience.iop.org/article/10.1088/1367-2630/ac46e3.

17

http://liberzon.csl.illinois.edu/teaching/cvoc/node4.html
https://arxiv.org/pdf/2104.10238.pdf
https://plus.maths.org/content/imaging-maths-inside-klein-bottle-15
https://www.cs.cmu.edu/~kmcrane/Projects/RepulsiveSurfaces/index.html
https://www.sciencedirect.com/science/article/pii/B9780126194555500024
https://www.sciencedirect.com/science/article/pii/0040938391900102
https://www.cs.cmu.edu/~kmcrane/Projects/RepulsiveSurfaces/index.html
https://www.sciencedirect.com/science/article/pii/B9780128200216000053
https://machinelearningmastery.com/gradient-descent-with-adadelta-from-scratch/#:~:text=Gradient%20descent%20is%20an%20optimization%20algorithm%20that%20uses%20the%20gradient,of%20partial%20derivatives%2C%20called%20Adadelta
https://machinelearningmastery.com/gradient-descent-with-adadelta-from-scratch/#:~:text=Gradient%20descent%20is%20an%20optimization%20algorithm%20that%20uses%20the%20gradient,of%20partial%20derivatives%2C%20called%20Adadelta
https://machinelearningmastery.com/gradient-descent-with-adadelta-from-scratch/#:~:text=Gradient%20descent%20is%20an%20optimization%20algorithm%20that%20uses%20the%20gradient,of%20partial%20derivatives%2C%20called%20Adadelta
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
https://realpython.com/gradient-descent-algorithm-python/
https://iopscience.iop.org/article/10.1088/1367-2630/ac46e3

[13] Saeed, Mehreen. “Gradient Descent in Python: Implementation and Theory.” Stack Abuse,
Stack Abuse, 4 Nov. 2020,
https://stackabuse.com/gradient-descent-in-python-implementation-and-theory/.

[14] Sebastian Ruder. “An Overview of Gradient Descent Optimization Algorithms.” Sebastian
Ruder, Sebastian Ruder, 20 Mar. 2020, https://ruder.io/optimizing-gradient-descent/.

18

https://stackabuse.com/gradient-descent-in-python-implementation-and-theory/
https://ruder.io/optimizing-gradient-descent/

